Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
J. venom. anim. toxins incl. trop. dis ; 15(4): 745-761, 2009. ilus
Article in English | LILACS | ID: lil-532757

ABSTRACT

The phospholipase A2 superfamily encompasses 15 groups that are classified into: secreted PLA2 (sPLA2); cytosolic PLA2 (cPLA2); Ca2+-independent intracellular PLA2 (iPLA2); platelet-activating factor acetylhydrolase (PAF-AH); and lysosomal PLA2. Currently, approximately 700 PLA2 sequences are known, of which 200 are obtained from the venom gland of Crotalinae snakes. However, thus far, little information is available on cloning, purification and structural characterization of PLA2 from Crotalus durisssus cascavela venom gland. In the present work, we report the molecular cloning of a novel svPLA2 from C. d. cascavella (Cdc), a predominant rattlesnake subspecies in northeastern Brazil. The Cdc svPLA2 cDNA precursor is 689 nucleotides long and encodes a protein of 138 amino acid residues, with a calculated molecular mass of approximately 13,847 Da and an estimated isoelectric point of 5.14. Phylogenetic analysis of Crotalinae PLA2 reveals that Cdc PLA2 clustered with other acidic type IIA PLA2 homologues is also present in the venom of North American rattlesnakes. Hitherto, this study presents a novel PLA2 cDNA precursor from C. d. cascavella and data reported herein will be useful for further steps in svPLA2 purification and analysis.


Subject(s)
Animals , Male , Cloning, Molecular , Crotalid Venoms
2.
Genet. mol. res. (Online) ; 5(1): 79-87, Mar. 31, 2006. ilus, graf
Article in English | LILACS | ID: lil-449143

ABSTRACT

Mammalian seminal plasma contains among others, proteins called spermadhesins, which are the major proteins of boar and stallion seminal plasma. These proteins appear to be involved in capacitation and sperm-egg interaction. Previously, we reported the presence of a protein related to spermadhesins in goat seminal plasma. In the present study, we have further characterized this protein, and we propose ion-exchange chromatography to isolate this seminal protein. Semen was obtained from four adult Saanen bucks. Seminal plasma was pooled, dialyzed against distilled water and freeze-dried. Lyophilized proteins were loaded onto an ion-exchange chromatography column. Dialyzed-lyophilized proteins from the main peak of DEAE-Sephacel were applied to a C2/C18 column coupled to an RP-HPLC system, and the eluted proteins were lyophilized for electrophoresis. The N-terminal was sequenced and amino acid sequence similarity was determined using CLUSTAL W. Additionally, proteins from DEAE-Sephacel chromatography step were dialyzed and submitted to a heparin-Sepharose high-performance liquid chromatography. Goat seminal plasma after ion-exchange chromatography yielded 6.47 +/- 0.63 mg (mean +/- SEM) of the major retained fraction. The protein was designated BSFP (buck seminal fluid protein). BSFP exhibited N-terminal sequence homology to boar, stallion and bull spermadhesins. BSFP showed no heparin-binding capabilities. These results together with our previous data indicate that goat seminal plasma contains a protein that is structurally related to proteins of the spermadhesin family. Finally, this protein can be efficiently isolated by ion-exchange and reverse-phase chromatography.


Subject(s)
Animals , Male , Chromatography, Ion Exchange/methods , Seminal Plasma Proteins/isolation & purification , Semen/chemistry , Goats , Seminal Plasma Proteins/genetics
3.
J. venom. anim. toxins incl. trop. dis ; 11(4): 557-578, out.-dez. 2005. ilus
Article in English | LILACS | ID: lil-417726

ABSTRACT

Snake venom (sv) C-type lectins encompass a group of hemorrhagic toxins, which are able to interfere with hemostasis. They share significant similarity in their primary structures with C-type lectins of other animals, and also present a conserved carbohydrate recognition domain (CRD). A very well studied sv C-type lectin is the heterodimeric toxin, convulxin (CVX), from the venoms of South American rattlesnakes, Crotalus durissus terrificus and C. d. cascavella. It consists of two subunits, alfa (CVXa, 13.9 kDa) and beta (CVXb, 12.6 kDa), joined by inter and intra-chain disulfide bounds, and is arranged in a tetrameric a4b4 conformation. Convulxin is able to activate platelet and induce their aggregation by acting via p62/GPVI collagen receptor. Several cDNA precursors, homolog of CVX subunits, were cloned by PCR homology screening. As determined by computational analysis, one of them, named crotacetin b subunit, was predicted as a polypeptide with a tridimensional conformation very similar to other subunits of convulxin-like snake toxins. Crotacetin was purified from C. durissus venoms by gel permeation and reverse phase high performance liquid chromatography. The heterodimeric crotacetin is expressed in the venoms of several C. durissus subspecies, but it is prevalent in the venom of C. durissus cascavella. As inferred from homology modeling, crotacetin induces platelet aggregation but noticeably exhibits antimicrobial activity against Gram-positive and Gram-negative bacteria


Subject(s)
Animals , Crotalus , Phosphatidylcholines/isolation & purification , Sequence Homology, Amino Acid , Crotalid Venoms/classification , Crotalid Venoms/chemistry , Sequence Alignment
4.
J. venom. anim. toxins incl. trop. dis ; 11(3): 217-241, jul.-set. 2005.
Article in English | LILACS | ID: lil-414922

ABSTRACT

Integrins encompass a family of transmembrane heterodimeric proteins of adhesion that maintain cells attached to other cells and to the extracellular matrix (ECM). Integrins work as bi-directional mechanotransducers, conveying mechanical signal from outside to inside the cell through a cascade of phosphorylation signals. On the other hand, the signal from inside to outside controls the strength and affinity of integrin adhesion. As proteins of focal contact, integrins are involved in diverse cell functions, such as cell activation, migration, growth, and survival. In the development of neoplastic disease and metastatic tumor, integrins can influence cancer invasiveness and progression, as well as mediate the formation of new blood vessels (angiogenesis). Diverse snake venom toxins have the ability to interact with multiple integrins, what results in inhibition of cell attachment, inhibition of angiogenesis, and induction of apoptotic death of tumor and vascular endothelial cells. The aim of this review is to present data about snake venom toxins that bind to integrins and evoke antiangiogenesis and antitumoral effects


Subject(s)
Animals , Antitoxins , Integrins/agonists , Neoplasms , Snake Venoms
SELECTION OF CITATIONS
SEARCH DETAIL